Regioselective Synthesis of Polyheterocyclic Scaffolds by Sequential [3,3] Sigmatropic Rearrangements and Pyridine Hydrotribromide Mediated Heterocyclization

K. C. Majumdar* and S. Muhuri

Department of Chemistry, University of Kalyani, Kalyani 741235, W.B. India. E-mail: <u>kcm ku@yahoo.co.in</u> Received November 29, 2006

A number of tetracyclic polyhetero scaffolds have been regioselectively synthesised in 70-75% yield from 4-[(3-aryloxy-2-propynyl)oxy]-6-methyl-pyran-2-ones *via* thionation of the lactone carbonyl, sequential Claisen rearrangements and pyridine hydrotribromide mediated heterocyclization.

J. Heterocyclic Chem., 44, 1109 (2007).

INTRODUCTION

The 4-hydroxy-6-methyl-2-pyrone moiety is important because of its occurrence in a number of naturally occurring compounds [1]. Some of these naturally occurring compounds possess biogenetically active groups [2] at C-3 or C-5 or both. As a logical extension, many more structurally analogous pyrones have been synthesized [3] and their bioactivity has been evaluated. Some 4-hydroxy-2-pyrones have also been tested as anticoagulant agents [4]. Our continued interest in the synthesis of bioactive heterocycles by the application of the sigmatropic rearrangements has directed us to synthesize a number of heterocyclic compounds viz. pyrrolopyrimidines [5], thiopyrano[3,2-c]quinolones [6], thiopyrano[3,2-c]coumarins [7], pyrrolo[3,2-c]coumarins [8], 2,3dihydrothieno[3,2-c]coumarins [9] and also 4-hydroxy-6methyl-2-pyrones [10-12] annulated heterocycles. Our success in the sequential Claisen rearrangements of coumarin [13] and dithiocoumarin systems [14] prompted us to undertake a study on the thermal rearrangement of 4-[(3-aryloxy-2-propynyl)oxy]-6-methyl-pyran-2-thiones. Herein we report the results. The substrates 3a-f for this purpose have been synthesized [15] in 55-60% yield from 4-hydroxy-6-methyl-2-pyrones 1 and 1-aryloxy-4-chlorobut-2-ynes 2 by refluxing in dry acetone, anhydrous K₂CO₃ and a catalytic amount of sodium iodide (Finkelstein condition).

RESULTS AND DISCUSSION

We have reported the synthesis of pyrano- [15], pyrido-[16] and thiopyranopyrones [10] fused at 3,4 position of the pyrone nucleus by the application of the sigmatropic rearrangements. Usually sigmatropic rearrangements of 4-[(4'-aryloxy-2'-propynyl)-oxy, thio or amino]-pyran-2ones are known to provide access to angularly fused heterocycles [15,16]. Here we have changed the strategy by thionation of the pyrone carbonyl. We felt that this may change the mode of cyclization for the formation of a new heterocyclic ring since sulfur is more nucleophilic than oxygen. With this in view, the 4-[(3-aryloxy-2propynyl)oxy]-6-methyl-pyran-2-ones were subjected to thionation [17] with P₂S₅ in refluxing benzene for 1-2 h to give 4-[(3-aryloxy-2-propynyl)oxy]-6-methyl-pyran-2thiones **4a-f** in 75-80% yield (Scheme I).

The products **4a-h** were characterized from their elemental analyses and spectroscopic data. Disappearance of carbonyl stretching frequency in the ir spectra of compounds **4a-h** clearly indicates the formation of -C=S

from -C=O. The substrates **4a-f** were then refluxed in *o*-dichlorobenzene for 1-2 h to give **5a-f** in 80-85% yield (Scheme II).

The compounds 5a-f were characterized from their elemental analyses and spectroscopic data. The ¹H NMR spectrum of **5a** showed signals at δ 3.50 (d, J = 5.6 Hz, 2H), 5.17 (d, J = 1.3 Hz, 2H) and a one proton double triplet at δ 6.03 (J = 5.6 Hz, J = 1.3 Hz) indicating the formation of a six-membered thiopyran ring fused at the 2,3 position of the pyrone nucleus. Although substrates 4a-f possess two potential sites for [3,3] sigmatropic rearrangement – aryl propargyl ether moiety and a vinyl propargyl sulfide moiety. All the substrates underwent a [3,3] signatropic rearrangement at the vinyl propargyl sulfide moiety to give the products 5a-f. The formation of products **5a-f** may be explained by considering an initial [3,3] signatropic rearrangement in **4a-f** to give allenyl intermediates 6a-f. Enolisation followed by cyclisation via 1,5-H shift and subsequent 6π -electrocyclic ring closure may afford products 5a-f (Scheme III). It is remarkable to note that all the substrates 4a-f studied at this instance regioselectively afforded exclusively products 5a-f.

Scheme III

As the products still possess the allyl aryl ether moiety, these were subjected to heating in refluxing o-dichlorobenzene in the presence of N,N-diethyl aniline for 6-7 h to give the phenolic products **10a-f** in 76-83% yield (Scheme IV).

The compounds **10a-f** were characterized from their elemental analyses and spectroscopic data. A peak in the region 3290 cm^{-1} in the IR spectrum appeared due to the

presence of phenolic –OH group in the compound **10a**. ¹H NMR spectrum of the compound **10a** showed signal at δ 5.26 (s, 1H) and 5.78 (s, 1H) indicating the presence of an exocyclic double bond in the compound **10a**.

Here also the isolation of the phenolic products is quite unusual. In most of the previous instances either the formation of cyclic product or rearranged phenolic products were reported [18,19]. The formation of **10a-f** from **5a-f** is easily explained by a [3,3] sigmatropic rearrangement followed by enolisation (Scheme V).

Our target was to synthesize polyheterocyclic compounds. We have earlier used pyridine hydrotribromide [20], hexamine hydrotribromide [21] and *N*-iodo-succinimide [22] for regioselective cyclization of *o*-cyclohex-2-ynyl phenols. We therefore treated products **10a-f** with one equivalent of pyridine hydrotribromide at 0-5°C for 1-1.5 h to give the products **12a-f** in almost quantitative yield (94-96% yield) (Scheme VI).

The products **12a-f** were characterized from their elemental analyses and spectroscopic data. Disappearance of phenolic –OH group in the IR spectrum and two one-proton singlets (due to exocyclic double bond) in the ¹H NMR spectrum confirmed the formation of compound

12a. The formation of the products can easily be explained by the formation of a cyclic bromonium ion followed by a "6-*endo*" cyclisation to give angularly fused [6,6] pyranothiopyrans (Scheme VII).

Scheme VII

The Stereochemistry of the ring fusion of the cyclic system can only be surmised from the molecular models (Dreiding Model), which showed a strain free *cis*-arrangement.

Summing up we have developed new, simple and practical synthesis of potentially bioactive polyheterocycles, 12c-Bromo-2-methyl-10b,12c-dihydro-4H,5H,11Htrihydropyrano[3',4':5,6]thiopyrano[3,2-c]benzopyran-4ones by the conversion of carbonyl to thiocarbonyl in the substrate and application of two consecutive [3,3] sigmatropic rearrangements.

EXPERIMENTAL

Melting points were determined in an open capillary and are uncorrected. IR spectra were recorded on a Perkin-Elmer L120-000A spectrometer (ν_{max} in cm⁻¹) on KBr disks. UV absorption spectra were recorded in EtOH on a Shimadzu UV-2401PC spectrophotometer (λ_{max} in nm). ¹H NMR (300 MHz, 500 MHz) and ¹³C NMR (75.5 MHz, 125 MHz) spectra were recorded on a Bruker DPX-300 and Bruker DPX-500 spectrometer in CDCl₃ (chemical shift in δ) with TMS as internal standard. Mass spectra was recorded on a JEOL JMS-600 instrument. ¹H NMR and ¹³C NMR spectra were recorded at the Indian Institute of Chemical Biology, Kolkata and Bose Institute, Kolkata. Silica gel [(60-120 mesh), Spectrochem, India] was used for chromatographic separation. Silica gel G [E-Merck (India)] was used for TLC. Petroleum ether refers to the fraction boiling between 60°C and 80°C.

General procedure for the synthesis of 4-[(3-aryloxy-2propynyl)oxy]-6-methyl-2H-pyran-2-ones (3a-f). A mixture of 1-aryloxy-4-chlorobut-2-ynes (10 mmol) (2), 4-hydroxy-6methyl-2-pyrone (1.26 g, 10 mmol) (1), anhydrous K_2CO_3 (3 g) and NaI (0.06 g) were refluxed in dry acetone for 4-5 h. The reaction mixture was cooled; removal of the solvent from the filtrate gave a gummy mass. The gummy mass was subjected to column chromatography over silica gel. Elution of the column with 1:9 ethylacetate-petroleum ether gave the compounds **3a-f**. **Compound 3a.** Yield: 60%, sticky liquid; ir (neat) $v_{max} = 1720$, 1580, 1250, 1130 cm⁻¹; uv (EtOH): $\lambda_{max} = 220$, 280 nm; ¹H NMR (CDCl₃, 300MHz) $\delta = 2.23$ (s, 3H), 4.69 (t, J = 1.6 Hz, 2H), 4.81 (t, J = 1.6 Hz, 2H), 5.47 (s, 1H), 5.78 (s, 1H), 6.93-7.40 (m, 3H); ms: m/z = 338, 340, 342 (M⁺). *Anal* Calcd. for C₁₆H₁₂O₄Cl₂: C, 56.64; H, 3.54; Found C, 56.71; H, 3.64%.

Compound 3b. Yield: 58%; sticky liquid; ir (neat) $v_{max} = 1720, 1580, 1250, 1140 \text{ cm}^{-1}$; uv (EtOH): $\lambda_{max} = 216, 277 \text{ nm}$; ¹H NMR (CDCl₃, 300MHz): $\delta = 2.21$ (s, 3H), 2.30 (s, 3H), 4.68 (t, J = 1.6 Hz, 2H), 4.79 (t, J = 1.6 Hz, 2H), 5.46 (s, 1H), 5.77 (s, 1H), 6.87-7.34 (m, 3H); ms: $m/z = 318, 320 \text{ (M}^+$). Anal Calcd. for C₁₇H₁₅O₄Cl: C, 64.05; H, 4.71; Found C, 64.25; H, 4.89%.

Compound 3c. Yield: 55%; sticky liquid; ir (neat) $v_{max} = 1720, 1580, 1250, 1130 \text{ cm}^{-1}$; uv (EtOH): $\lambda_{max} = 216, 277 \text{ nm}$; ¹H NMR (CDCl₃ 500MHz) $\delta = 2.19$ (s, 3H), 2.20 (s, 3H), 2.26 (s, 3H), 4.67 (t, J = 1.6 Hz, 2H), 4.71 (t, J = 1.6 Hz, 2H), 5.48 (s, 1H), 5.78 (s, 1H), 6.76-6.96 (m, 3H); ms: m/z = 298(M⁺). Anal Calcd. for C₁₈H₁₈O₄: C, 72.48; H, 6.04; Found C, 72.56; H, 6.25%.

Compound 3d. Yield: 55%; sticky liquid; ir (neat) $\nu_{max} = 1720, 1580, 1250, 1130 \text{ cm}^{-1}$; uv (EtOH): $\lambda_{max} = 214, 278 \text{ nm}$; ¹H NMR (CDCl₃, 500MHz) $\delta = 2.15$ (s, 3H), 2.20 (s, 3H), 2.26 (s, 3H), 4.68 (t, J = 1.6 Hz, 2H), 4.73 (t, J = 1.6 Hz, 2H), 5.48 (s, 1H), 5.78 (s, 1H), 6.75-7.06 (m, 3H); ms: m/z = 298(M⁺). Anal Calcd. for C₁₈H₁₈O₄: C, 72.48; H, 6.04; Found C, 72.61; H, 6.18%.

Compound 3f. Yield: 60%; sticky liquid; ir (neat) $v_{max} = 1720, 1580, 1250, 1130 \text{ cm}^{-1}$; uv (EtOH): $\lambda_{max} = 216, 280 \text{ nm}$; ¹H NMR (CDCl₃, 500MHz) $\delta = 1.29$ (s, 9H), 2.20 (s, 3H), 4.68 (t, *J* = 1.6 Hz, 2H), 4.70 (t, *J* = 1.6 Hz, 2H), 5.48 (s, 1H), 5.78 (s, 1H), 6.83-7.31 (m, 4H); ms: $m/z = 326(\text{M}^+)$. Anal Calcd. for $C_{20}H_{22}O_4$: C, 73.62; H, 6.75; Found C, 73.85; H, 6.94%.

Compound 3e was prepared according to the published procedure [15].

General Procedure for the Synthesis of 4-[(3-Aryloxypropynyl)oxy)]-6-methyl-2*H*-pyran-2-thiones (4a-f). A mixture of 4-[(3-aryloxy-2-propynyl)oxy]-6-methyl-2*H*-pyran-2-ones **3a-f** (2 mmol) and P_2S_5 (3 mmol) were refluxed in anhydrous benzene (50 ml) on a water bath for 1-2 h. The reaction mixture was then cooled, solid residue was extracted with benzene (3 x 25 ml) and the combined benzene layer was washed with water, and then dried over Na₂SO₄. Removal of solvent gave a gummy mass, which was then chromatographed over silica gel. Sticky liquids were obtained when all the columns were eluted with 1: 9.5 ethyl acetate-petroleum ether.

Compound 4a. Yield: 80%, sticky liquid; ir (neat) $v_{max} = 1651, 1542, 1457, 1090 \text{ cm}^{-1}$; uv (EtOH): $\lambda_{max} = 358, 281, 229$ nm; ¹H NMR (CDCl₃, 300 MHz) $\delta = 2.36$ (s, 3H), 4.73 (t, J = 1.7 Hz, 2H), 4.82 (t, J = 1.7 Hz, 2H), 6.06 (s, 1H), 6.72 (s, 1H), 6.93-7.39 (m, 3H); ms: $m/z = 354, 356, 358(M^+)$. Anal Calcd. for $C_{16}H_{12}O_3SCl_3$; C, 54.08; H, 3.38; Found C, 54.28; H, 3.59%.

Compound 4b. Yield: 80%, sticky liquid; ir (neat) $v_{max} = 1650, 1540, 1459, 1085 cm^{-1}$; uv (EtOH): $\lambda_{max} = 355, 281, 229$ nm; ¹H NMR (CDCl₃, 500 MHz) $\delta = 2.19$ (s, 3H), 2.33 (s, 3H), 4.70 (t, J = 1.7 Hz, 2H), 4.73 (t, J = 1.7 Hz, 2H), 6.03 (s, 1H), 6.71 (s, 1H), 6.76-7.11 (m, 3H); ms: m/z = 334, 336(M⁺). Anal Calcd. for C₁₇H₁₅O₃SCI: C, 60.99; H, 4.48; Found C, 61.15; H, 4.69%.

Compound 4c. Yield: 75%, sticky liquid; ir (neat) $v_{max} = 1651, 1537, 1452, 1088 \text{ cm}^{-1}$; uv (EtOH): $\lambda_{max} = 358, 280, 227$ nm; ¹H NMR (CDCl₃, 500 MHz) $\delta = 2.19$ (s, 3H), 2.26 (s, 3H), 2.33 (s, 3H), 4.73 (s, 4H, OCH₂), 6.05 (s, 1H), 6.72 (s, 1H),

6.75-6.96 (m, 3H, ArH); ms: $m/z = 314(M^+)$. Anal Calcd. for C₁₈H₁₈O₃S: C, 68.79; H, 5.73; Found C, 68.95; H, 5.65%.

Compound 4d. Yield: 75%, sticky liquid; ir (neat) $v_{max} = 1650, 1537, 1450, 1090 \text{ cm}^{-1}$; uv (EtOH): $\lambda_{max} = 358, 280, 227$ nm; ¹H NMR (CDCl₃, 500 MHz) $\delta = 2.15$ (s, 3H), 2.27 (s, 3H), 2.34 (s, 3H), 4.72 (t, J = 1.7 Hz, 2H), 4.73(t, J = 1.7 Hz, 2H), 6.05 (s, 1H), 6.73 (s, 1H), 6.74-7.09 (m, 3H, ArH); ms: $m/z = 314(M^{+})$. Anal Calcd. for $C_{18}H_{18}O_{3}S$: C, 68.79; H, 5.73; Found C, 68.87; H, 5.97%.

Compound 4e. Yield: 80%, sticky liquid; ir (neat) $v_{max} = 1651, 1537, 1452, 1088 cm⁻¹; uv (EtOH): <math>\lambda_{max} = 358, 280, 227$ nm; ¹H NMR (CDCl₃, 500 MHz) $\delta = 2.34$ (s, 3H), 4.72 (t, *J* =1.7 Hz, 2H), 4.83 (t, *J* =1.7 Hz, 2H), 6.05 (s, 1H), 6.72 (s, 1H), 6.96-7.38 (m, 4H, ArH); ms: $m/z = 320, 322(M^+)$. Anal Calcd. for $C_{16}H_{13}O_3SCl: C, 59.91$; H, 4.06; Found C, 60.15; H, 4.26%.

Compound 4f. Yield: 75%, sticky liquid; ir (neat) $v_{max} = 1650, 1540, 1451, 1090 \text{ cm}^{-1}$; uv (EtOH): $\lambda_{max} = 358, 281, 229$ nm; ¹H NMR (CDCl₃, 500 MHz) $\delta = 1.30$ (s, 9H), 2.34 (s, 3H), 4.66 (t, J = 1.7 Hz, 2H), 4.72 (t, J = 1.7 Hz, 2H), 6.05 (s, 1H), 6.74 (s, 1H), 6.86-7.33 (m, 4H, ArH); ms: $m/z = 342(M^+)$. Anal Calcd. for C₂₀H₂₂O₃S: C, 70.18; H, 6.43; Found C, 70.35; H, 6.56%.

General Procedure for the Synthesis of 5-[(Aryloxy)methyl]-2-methyl-4H,7H-thiopyrano[2,3-b]pyran-4-ones (5a-f). 4-[(3-Aryloxy-propynyl)oxy)]-6-methyl-2H-pyran-2-thiones 4a-f (500 mg) were refluxed in *o*-dichlorobenzene (5 ml) for 1-2 h. The reaction mixture was then cooled and directly subjected to column chromatography over silica gel. *o*-Dichlorobenzene was eluted out with petroleum ether. All the compounds 5a-f were obtained as white solid when the columns were eluted with 1:6.5 ethyl acetate-petroleum ether.

Compound 5a. Yield: 85%, white solid, mp 140-142°C; ir (KBr) $v_{max} = 1728$, 1659, 1609, 1481, 1290 cm⁻¹; uv (EtOH): $\lambda_{max} = 284$, 259, 246, 221 nm; ¹H NMR (CDCl₃, 300 MHz) $\delta = 2.26$ (s, 3H), 3.50 (d, J = 5.6 Hz, 2H, SCH₂), 5.17 (d, J = 1.3 Hz, 2H, OCH₂), 6.05 (s, 1H), 6.03 (tt, J = 1.3 Hz, 5.6 Hz, 1H), 6.90 (d, J = 8.8 Hz, 1H,ArH), 7.13-7.17 (dd, J = 8.8 Hz, 2.4 Hz, 1H, ArH), 7.34 (d, J = 2.4 Hz, 1H, ArH); 13_C NMR (CDCl₃, 125 MHz) $\delta c = 19.07$, 21.35, 69.7, 108.4, 118.2, 123.1, 123.2, 125.7, 124.49, 127.32, 139.08, 152.99, 155.0, 161.5, 183.4 (-C=O); ms: m/z = 354, 356, 358(M⁺). *Anal* Calcd. for C₁₆H₁₂O₃SCl₂: C, 54.08; H, 3.38; Found C, 54.32; H, 3.42%.

Compound 5b. Yield: 80%, white solid, mp 150-152°C; ir (KBr) $v_{max} = 1726$, 1657, 1480, 1292 cm⁻¹; uv (EtOH): $\lambda_{max} = 281$, 258, 246, 220 nm; ¹H NMR (CDCl₃ 300 MHz) $\delta = 2.20$ (s, 3H), 2.26 (s, 3H), 3.49 (d, J = 5.7 Hz, 2H, SCH₂), 5.09 (d, J = 1.5 Hz, 2H, OCH₂), 6.05 (s, 1H), 5.92-5.96 (tt, J = 1.5 Hz, 5.7 Hz, 1H), 6.76 (d, J = 8.2 Hz, 1H, ArH), 7.05 (dd, J = 8.2 Hz, 2.4 Hz, 1H, ArH); ms: m/z = 334, 336(M⁺). Anal Calcd. for C₁₇H₁₅O₃SCl: C, 60.99; H, 4.84; Found C, 61.20; H, 4.76%.

Compound 5c. Yield: 80%, white solid, mp 130-132°C; ir (KBr) $v_{max} = 1662$, 1617, 1504, 1255 cm⁻¹; uv (EtOH): $\lambda_{max} = 279$, 257, 246, 220 nm; ¹H NMR (CDCl₃, 300 MHz) $\delta = 2.21$ (s, 3H), 2.24 (s, 3H), 2.25 (s, 3H), 3.48 (d, J = 5.7 Hz, 2H, SCH₂), 5.09 (d, J = 1.6 Hz, 2H, OCH₂), 6.05 (s, 1H), 5.98 (tt, J = 1.6 Hz, 5.7 Hz, 1H), 6.74-6.93 (m, 3H, ArH); ms: m/z = 314(M⁺). Anal Calcd. for C₁₈H₁₈O₃S: C, 68.79; H, 5.73; Found C, 68.89; H, 5.82%.

Compound 5d. Yield: 82%, white solid, mp 127-129°C; ir (KBr) $v_{max} = 1726$, 1655, 1500, 1250 cm⁻¹; uv (EtOH): $\lambda_{max} = 278$, 255, 247, 222 nm; ¹H NMR (CDCl₃ 300 MHz) $\delta = 2.26$ (s,

3H), 2.25 (s, 3H), 2.26 (s, 3H), 3.49 (d, J = 5.7 Hz, 2H, SCH₂), 5.10 (d, J = 1.5 Hz, 2H, OCH₂), 5.97 (tt, J = 1.5 Hz, 5.7 Hz, 1H), 6.05 (s, 1H), 6.74-7.04 (m, 3H, ArH); ms: $m/z = 314(M^+)$. Anal Calcd. for C₁₈H₁₈O₃S: C, 68.79; H, 5.73; Found C, 68.84; H, 5.87%.

Compound 5e. Yield: 80%, white solid, mp 125-127°C; ir (KBr) $v_{max} = 1726$, 1658, 1480, 1288 cm⁻¹; uv (EtOH): $\lambda_{max} = 282$, 259, 247, 221 nm; ¹H NMR (CDCl₃, 500 MHz) $\delta = 2.26$ (s, 3H), 3.51 (d, J = 5.7 Hz, 2H, SCH₂), 5.19 (d, J = 1.5 Hz, 2H, OCH₂), 6.09 (tt, J = 1.5 Hz, 5.7 Hz, 1H), 6.07 (s, 1H), 6.86 (ddd, J = 1.3 Hz, 7.8 Hz, 8.2 Hz, 1H, ArH), 6.99 (dd, J = 1.3 Hz, 8.2 Hz, 1H, ArH), 7.33 (dd, J = 1.5 Hz, 7.8 Hz, 1H, ArH), ms: m/z = 320, 322(M⁺). *Anal* Calcd. for C₁₆H₁₃O₃SCl: C, 59.91; H, 4.06; Found C, 60.21; H, 4.12%.

Compound 5f. Yield: 78%, sticky liquid; ir (neat) $v_{max} = 1726$, 1652, 1485, 1290 cm⁻¹; uv (EtOH): $\lambda_{max} = 282$, 258, 246, 223 nm; ¹H NMR (CDCl₃, 500 MHz) $\delta = 1.28$ (s, 9H), 2.25 (s, 3H), 3.48 (d, J = 5.75 Hz, 2H, SCH₂), 5.10 (d, J = 1.25 Hz, 2H, OCH₂), 5.95 (tt, J = 1.25 Hz, 5.75 Hz, 1H), 6.07 (s, 1H), 6.85 (d, J = 8.7 Hz, 2H, ArH), 7.25 (d, J = 8.7 Hz, 2H, ArH); ms: m/z = 342(M⁺). *Anal* Calcd. for C₂₀H₂₂O₃S: C, 70.18; H, 6.43; Found C, 70.27; H, 6.55%.

General Procedure for the Synthesis of 6-(2-Hydroxyaryl)-2methyl-5-methylene-6,7-dihydrothiopyrano[2,3-b]pyran-4(5H)-ones (10a-f). 5-[(Aryloxy)methyl]-2-methyl-4H,7Hthiopyrano[2,3-b]pyran-4-ones 5a-f (300 mg) were refluxed in *o*-dichlorobenzene (5 ml) in the presence of *N*,*N*-diethylaniline (7-8 drops) for about 6-7 h. Then the reaction mixture was allowed to cool and directly subjected to column chromatography over silica gel. All the compounds 10a-f were obtained as white solid when the columns were eluted with 1:5 ethyl acetate-petroleum ether.

Compound 10a. Yield: 82%, white solid, mp 190-192°C; ir (KBr) $v_{max} = 3290$, 1660, 1403, 1159 cm⁻¹; uv (EtOH): $\lambda_{max} = 293$, 235, 217 nm; ¹H NMR (CDCl₃, 500 MHz) $\delta = 2.23$ (s, 3H), 3.31 (dd, J = 12.3 Hz, 7.1 Hz, 1H, SCH₂), 3.51 (dd, J = 12.3 Hz, 3.0 Hz, 1H, SCH₂), 4.28 (dd, J = 7.1 Hz, 3.0 Hz, 1H), 5.26 (s, 1H, =CH₂), 5.78 (s, 1H, =CH₂), 6.10 (s, 1H), 6.84 (s, 1H), 6.96 (brs, 2H, ArH); ms: m/z = 354, 356, 358(M⁺). Anal Calcd. for C₁₆H₁₂O₃SCl₂: C, 54.08; H, 3.38; Found C, 54.27; H, 3.51%.

Compound 10b. Yield: 80%, white solid, mp 180-182°C; ir (KBr) $v_{max} = 3300$, 1665, 1405, 1160 cm⁻¹; uv (EtOH): $\lambda_{max} = 290$, 225, 215 nm; ¹H NMR (CDCl₃, 300 MHz) $\delta = 2.23$ (s, 6H), 3.22 (dd, J = 12.6 Hz, 3.38 Hz, 1H, SCH₂), 3.50 (dd, J = 12.6 Hz, 7.8 Hz, 1H, SCH₂), 4.15 (dd, J = 7.8 Hz, 3.38 Hz, 1H), 5.02 (s, 1H, =CH₂), 5.21 (s, 1H, =CH₂), 6.09 (s, 1H), 6.80 (s, 1H), 6.84 (d, J = 2.18 Hz, 1H, ArH), 7.04 (d, J = 2.18 Hz, 1H, ArH); ms: m/z = 334, 336(M⁺). Anal Calcd. for C₁₇H₁₅O₃SCI: C, 60.99; H, 4.84; Found C, 61.16; H, 4.90%.

Compound 10c. Yield: 83%, white solid, mp 175-177°C; ir (KBr) $v_{max} = 3290$, 1655, 1591, 1395 cm⁻¹; uv (EtOH): $\lambda_{max} = 282$, 218, 205 nm; ¹H NMR (CDCl₃, 300 MHz) $\delta = 2.20$ (s, 3H), 2.22 (s, 6H), 3.21 (dd, J = 12.1 Hz, 6.8 Hz, 1H, SCH₂), 3.57 (dd, J = 12.1 Hz, 2.9 Hz, 1H, SCH₂), 4.14 (dd, J = 6.8 Hz, 2.9 Hz, 1H), 5.02 (s, 1H, =CH₂), 5.20 (s, 1H, =CH₂), 6.10 (s, 1H), 6.66 (s, 1H), 6.79 (s, 1H, ArH), 6.87 (brs, 1H, ArH); ms: m/z =314(M⁺). *Anal* Calcd. for C₁₈H₁₈O₃S: C, 68.79; H, 5.73; Found C, 68.91; H, 5.84%.

Compound 10d. Yield: 76%, White solid, mp 170-172°C; ir (KBr) $v_{max} = 3310$, 1650, 1590, 1395 cm⁻¹; uv (EtOH): $\lambda_{max} = 280$, 219, 205 nm; ¹H NMR (CDCl₃, 500 MHz) $\delta = 2.16$ (s, 3H),

2.21 (s, 3H), 2.26 (s, 3H), 3.25 (dd, J = 12.4 Hz, 3 Hz, 1H, SCH₂), 3.57 (dd, J = 12.4 Hz, 7.9 Hz, 1H, SCH₂), 4.14 (dd, J = 7.9 Hz, 3 Hz, 1H), 4.88 (s, 1H, =CH₂), 5.23 (s, 1H, =CH₂), 6.08 (s, 1H), 6.70 (d, J = 7.6 Hz, 1H, ArH), 6.76 (d, J = 7.6 Hz, 1H, ArH), 6.80 (s, 1H); ms: m/z = 314 (M⁺). Anal Calcd. for C₁₈H₁₈O₃S: C, 68.79; H, 5.73; Found C, 68.94; H, 5.77%.

Compound 10e. Yield: 80%, white solid, mp 160-162°C; ir (KBr) $v_{max} = 3290$, 1657, 1591, 1407 cm⁻¹; uv (EtOH): $\lambda_{max} = 284$, 236, 221 nm; ¹H NMR (CDCl₃, 500 MHz) $\delta = 2.22$ (s, 3H), 3.33 (dd, J = 12.7 Hz, 3.2 Hz, 1H, SCH₂), 3.58 (dd, J = 12.7 Hz, 5.8 Hz, 1H, SCH₂), 4.29 (dd, J = 5.8 Hz, 3.2 Hz, 1H), 5.28 (s, 1H, =CH₂), 5.81 (s, 1H, =CH₂), 6.11 (s, 1H), 6.76-6.89 (m, 4H, ArH & -OH); ms: m/z = 320, $322(M^+)$. Anal Calcd. for C₁₆H₁₃O₃SCl: C, 59.91; H, 4.06; Found C, 60.17; H, 4.19%.

Compound 10f. Yield: 78%, white solid, mp 155-157°C; ir (KBr) $v_{max} = 3289$, 1655, 1591, 1508, 1395 cm⁻¹; uv (EtOH): $\lambda_{max} = 287$, 227 nm; ¹H NMR (CDCl₃, 500 MHz) $\delta = 1.21$ (s, 9H), 2.21 (s, 3H), 3.25 (dd, J = 12.1 Hz, 3.3 Hz, 1H, SCH₂), 3.65 (dd, J = 12.1 Hz, 8.2 Hz, 1H, SCH₂), 4.16 (dd, J = 8.2 Hz, 3.3 Hz, 1H), 5.13 (s, 1H, =CH₂), 5.22 (s, 1H, =CH₂), 6.09 (s, 1H), 6.72 (d, J = 7.7 Hz, 1H, ArH), 6.76 (s, 1H), 7.02 (s, 1H, ArH), 7.14 (d, J = 7.7 Hz, 1H, ArH); ms: m/z = 342(M⁺). Anal Calcd. for C₂₀H₂₂O₃S: C, 70.18; H, 6.43; Found C, 70.29; H, 6.58%.

General Procedure for the Synthesis of 12c-Bromo-2methyl-10b,12c-dihydro-4H,5H,11H-trihydropyrano[3',4': 5,6]thiopyrano[3,2-c]benzopyran-4-ones (12a-f). 6-(2-Hydroxyaryl)-2-methyl-5-methylene-6,7-dihydrothiopyrano[2,3b]pyran-4(5H)-ones 10a-f (100 mg) were treated with one equivalent of pyridine hydrotribromide in chloroform at 0-5°C for about 1-1.5 h. The reaction mixture was washed with 10% sodium bisulfite, water and brine. Finally it was dried over anhydrous Na₂SO₄. Column chromatography was performed and all the compounds 12a-f were eluted with 1:9 ethyl acetatepetroleum ether to give white crystalline solids.

Compound 12a. Yield: 95%, white solid, mp 205-207°C; ir (KBr) $v_{max} = 1664$, 1618, 1460, 1388 cm⁻¹; uv (EtOH): $\lambda_{max} = 276$, 232, 216 nm; ¹H NMR (CDCl₃, 500 MHz) $\delta = 2.24$ (s, 3H), 2.92 (dd, J = 13.2 Hz, 10.8 Hz, 1H), 3.17 (dd, J = 4.0 Hz, 13.2 Hz, 1H, SCH₂), 3.56 (d, J = 9.8 Hz, 1H, OCH₂), 3.99 (dd, J = 4.0 Hz, 10.8 Hz, 1H, SCH₂), 4.87 (d, J = 9.8 Hz, 1H, OCH₂), 6.08 (s, 1H), 7.2 (s, 1H, ArH), 7.23 (s, 1H, ArH); ¹³C NMR (CDCl₃, 125 MHz) $\delta_{e} = 19.5$, $30.9(C_{11})$, $49.85(C_{10b})$, $60.2(C_{12c})$, 76.57(C₅), 110.5(C₃), 117.5(C_{10a}), 119.2(C_{12b}), 127.0(C₇), 127.2(C₁₀), 129.0(C₉), 129.5(C₈), 154.7(C_{6a}), 166.7(C₂), 73.9(C_{12a}), 183.06 (-C=O); ms: m/z = 432, 434, 436, 438(M⁺). Anal Calcd. for C₁₆H₁₁O₃SBrCl₂: C, 44.24; H, 2.53; Found C, 44.36; H, 2.67%.

Compound 12b. Yield: 94%, white solid, mp 200-202°C; ir (KBr) $v_{max} = 1670$, 1620, 1460, 1390 cm⁻¹; uv (EtOH): $\lambda_{max} = 275$, 230, 220 nm; ¹H NMR (CDCl₃, 500 MHz) $\delta = 2.19$ (s, 3H), 2.24 (s, 3H), 2.89 (dd, J = 12.6 Hz, 10.3 Hz, 1H), 3.13 (dd, J = 3.1 Hz, 12.6 Hz, 1H, SCH₂), 3.52 (d, J = 9.6 Hz, 1H, OCH₂), 3.89 (dd, J = 3.1 Hz, 10.3 Hz, 1H, SCH₂), 4.80 (d, J = 9.6 Hz, 1H, OCH₂), 6.07 (s, 1H), 7.01 (s, 1H, ArH), 7.03 (s, 1H, ArH); ms: m/z = 412, 414, 416(M⁺). Anal Calcd. for C₁₇H₁₄O₃SBrCl: C, 49.34; H, 3.38; Found C, 49.52; H, 3.49%.

Compound 12c. Yield: 95%, white solid, mp 190-192°C; ir (KBr) $v_{max} = 1660$, 1480, 1390 cm⁻¹; uv (EtOH): $\lambda_{max} = 276$, 260, 218 nm; ¹H NMR (CDCl₃ 500 MHz) $\delta = 2.19$ (s, 3H), 2.23 (s, 3H), 2.27 (s, 3H), 2.88 (dd, J = 12.2 Hz, 10.6 Hz, 1H), 3.11 (dd, J = 3.0 Hz, 10.6 Hz, 1H, SCH₂), 3.52 (d, J = 9.2 Hz, 1H, OCH₂), 3.84 (dd, J = 3.0 Hz, 12.2 Hz, 1H, SCH₂), 4.81 (d, J = 9.2 Hz, Hz, 202 Hz, 20

1H, OCH₂), 6.07 (s, 1H), 6.83 (s, 1H, ArH), 6.86 (s, 1H, ArH); ms: m/z = 392, $394(M^+)$. Anal Calcd. for $C_{18}H_{17}O_3SBr$: C, 54.96; H, 4.32; Found C, 55.12; H, 4.51%.

Compound 12d. Yield: 96%, white solid, mp 185-187°C; ir (KBr) $v_{max} = 1665$, 1480, 1388 cm⁻¹; uv (EtOH): $\lambda_{max} = 280$, 262, 220 nm; ¹H NMR (CDCl₃ 500 MHz) $\delta = 2.19$ (s, 3H), 2.23 (s, 3H), 2.32 (s, 3H), 2.87 (dd, J = 13.1 Hz, 10.9 Hz, 1H), 3.11 (dd, J = 3.8 Hz, 13.1 Hz, 1H, SCH₂), 3.52 (d, J = 9.6 Hz, 1H, OCH₂), 3.88 (dd, J = 3.8 Hz, 10.9 Hz, 1H, SCH₂), 4.79 (d, J = 9.6 Hz, 1H, OCH₂), 6.07 (s, 1H), 6.84 (d, J = 7.6 Hz, 1H, ArH), 6.86 (d, J = 7.6 Hz, 1H, ArH); ms: m/z = 392, 394(M⁺). Anal Calcd. for C₁₈H₁₇O₃SBr: C, 54.96; H, 4.32; Found C, 55.16; H, 4.41%.

Compound 12e. Yield: 96%, white solid, mp 175-177°C; ir (KBr) $v_{max} = 1663$, 1614, 1391 cm⁻¹; uv (EtOH): $\lambda_{max} = 351$, 277, 218 nm; ¹H NMR (CDCl₃, 500 MHz) $\delta_{\rm H} = 2.24$ (s, 3H), 2.92 (dd, J = 13.2 Hz, 11.2 Hz, 1H), 3.15 (dd, J = 4.1 Hz, 13.2 Hz, 1H, SCH₂), 3.55 (d, J = 9.7 Hz, 1H, OCH₂), 3.98 (dd, J = 4.1 Hz, 11.2 Hz, 1H, SCH₂), 4.89 (d, J = 9.7 Hz, 1H, OCH₂), 6.10 (s, 1H), 6.88 (t, J = 7.7 Hz, 1H, ArH), 7.13 (d, J = 7.7 Hz, 1H, ArH), 7.21 (d, J = 7.7 Hz, 1H, ArH); ms: m/z = 398, 400, 402(M⁺). Anal Calcd. for C₁₆H₁₂O₃SBrCl: C, 48.06; H, 3.0; Found C, 48.21; H, 3.13%.

Compound 12f. Yield: 94%, white solid, mp 170-172°C; ir (KBr) $v_{max} = 1661$, 1619, 1487, 1392 cm⁻¹; uv (EtOH): $\lambda_{max} = 278$, 230, 218 nm; ¹H NMR (CDCl₃, 500 MHz) $\delta = 1.30$ (s, 9H), 2.24 (s, 3H), 2.88 (dd, J = 14.1 Hz, 12.2 Hz, 1H), 3.12 (dd, J = 4.1 Hz, 14.1 Hz, 1H, SCH₂), 3.52 (d, J = 9.5 Hz, 1H, OCH₂), 3.88 (dd, J = 4.1 Hz, 12.2 Hz, 1H, SCH₂), 4.78 (d, J = 9.5 Hz, 1H, OCH₂), 6.10 (s, 1H), 6.86 (d, J = 8.9 Hz, 1H, ArH), 7.22 (d, J = 8.9 Hz, 1H, ArH), 7.24 (s, 1H, ArH); ms: m/z = 420, 422(M⁺). Anal Calcd. for C₂₀H₂₁O₃SBr: C, 57.01; H, 4.99; Found C, 57.22; H, 5.06%.

Acknowledgement. We thank the CSIR (New Delhi) for financial assistance. Ms. S. M. is thankful to CSIR (New Delhi) for a Senior Research Fellowship. We also thank the DST (New Delhi) for providing UV-VIS spectrophotometer and FT-IR spectrometer under DST-FIST programm.

REFERENCES

* Corresponding author. Tel.: +91-33-2582-7521, fax: +91-33-25828282; e-mail: kcm_ku@yahoo.co.in

 a) Bentley, R.; Zwitkowits, P. M. J. Am. Chem. Soc. 1967, 89, 676. b) Bentley, R.; Zwitkowits, P. M. J. Am. Chem. Soc. 1967, 89, 681.

[2] a) Omura, S.; Ohno, H.; Saheki, T.; Masakazu, Y.;
 Nakagawa, A..*Biochem. Biophys. Res. Commun.* **1978**, 83, 704. b) Ohno,
 H.; Saheki, T.; Awaya, J.; Nakagawa, A.; Omura, S. J. Antibiot. **1978**, 31, 1116.

[3] a) Groutas, W. C.; Abrams, W. R.; Carroll, R. T.; Moi, M. K.; Miller, K. E.; Margolis, M. T. *Experientia* **1984**, *40*, 361. b) Groutas, W. C.; Stanga, M. A.; Brubaker, M. J.; Huang, T. L.; Moi, M. K.; Carroll, R. T. J. Med. Chem. **1985**, *28*, 1106. c) Spencer, R. W.; Copp, L. J.; Pfister, J. R. J. Med. Chem. **1985**, *28*, 1828. d) Cook, L.; Ternai, B.; Ghosh, P. J. Med. Chem. **1987**, *30*, 1017.

[4] a) Rehse, K.; Schinkel, W.; Siemann, U. Arch. Pharm. 1980, 313, 344. b) Rehse, K.; Schinkel, W. Arch. Pharm. 1983, 316, 845. c) Rehse, K.; Schinkel, W. Arch. Pharm. 1983, 316, 988. d) Rehse, K.; Brandt, F. Arch. Pharm. 1983, 316, 1030.

[5] Majumdar, K. C.; Das, U.; Jana, N. K. J. Org. Chem. 1998, 63, 3550.

[6] Majumdar, K. C.; Ghosh, M.; Jana, M.; Saha, D. Tetrahedron Lett.. 2002, 43, 2111.

[7] Majumdar, K. C.; Ghosh , S. K. Tetrahedron Lett. 2002, 43, 2115.

[8] Majumdar, K. C.; Samanta, S. K. Tetrahedron Lett. 2002, 43, 2119.

[9] Majumdar, K. C.; Ghosh, S. K. Tetrahedron Lett. 2002, 43, 2123.

- [10] Majumdar, K. C.; Sarkar, S.; Ghosh, S. Synth. Commun. 2004, 34, 1265.
- [11] Majumdar, K. C.; Kundu, U. K.; Ghosh, S. Tetrahedron 2002, 58, 10309.
- [12] Majumdar, K. C.; Kundu, U. K.; Ghosh, S. J. Chem. Soc. Perkin Trans 1 2002, 2139.
- [13] Majumdar, K. C.; Kundu, U. K.; Ghosh, S. K. Org. Lett. 2002, 4, 2629.
- [14] Majumdar, K. C.; Bandyopadhyay, A.; Biswas, A. *Tetrahedron* **2003**, *59*, 5289.
 - [15] Majumdar, K. C.; Ghosh, S.; Kundu, A. K. Synth. Commun.

2002, 32, 753.

- [16] Majumdar, K. C.; Ghosh, S. Tetrahedron 2001, 57, 1589.
- [17] a) Majumdar, K. C.; Ghosh, M.; Jana, M. Synthesis 2002,
- 669. b) Majumdar, K. C.; Jana, G. H. Synthesis **2001**, 924.
- [18] Majumdar, K. C.; Das D. P.; Jana, G. H. Synth. Commun. **1993**, 23, 2171
- [19] Majumdar, K. C.; Balasubramanian, K. K.; Thygarajan, B. S. J. Heterocycl. Chem. **1973**, 10, 159.
- [20] a) Majumdar, K. C.; Kundu, A. K. *Indian J. Chem.* **1993**, *32B*, 605. b) Majumdar, K. C.; Kundu, A. K. *Can. J. Chem.* **1995**, *73*, 1727.
- [21] Majumdar, K. C.; Kundu, A. K.; Chatterjee, P. Synth. Commun. 1996, 26, 893.
- [22] a) Majumdar, K. C.; Basu, P. K.; Roy, B. Synth. Commun.
 2003, 33, 3621. b) Majumdar, K. C.; Sarkar, S. Tetrahedron 2002, 58, 8501.