K. C. Majumdar* and S. Muhuri<br>Department of Chemistry, University of Kalyani, Kalyani 741235, W.B. India<br>E-mail: kcm ku@yahoo.co.in<br>Received November 29, 2006



A number of tetracyclic polyhetero scaffolds have been regioselectively synthesised in $70-75 \%$ yield from 4-[(3-aryloxy-2-propynyl)oxy]-6-methyl-pyran-2-ones via thionation of the lactone carbonyl, sequential Claisen rearrangements and pyridine hydrotribromide mediated heterocyclization.
J. Heterocyclic Chem., 44, 1109 (2007).

## INTRODUCTION

The 4-hydroxy-6-methyl-2-pyrone moiety is important because of its occurrence in a number of naturally occurring compounds [1]. Some of these naturally occurring compounds possess biogenetically active groups [2] at C-3 or C-5 or both. As a logical extension, many more structurally analogous pyrones have been synthesized [3] and their bioactivity has been evaluated. Some 4-hydroxy-2-pyrones have also been tested as anticoagulant agents [4]. Our continued interest in the synthesis of bioactive heterocycles by the application of the sigmatropic rearrangements has directed us to synthesize a number of heterocyclic compounds viz. pyrrolopyrimidines [5], thiopyrano[3,2-c]quinolones [6], thiopyrano[3,2-c]coumarins [7], pyrrolo[3,2-c]coumarins [8], 2,3-dihydrothieno[3,2-c]coumarins [9] and also 4-hydroxy-6-methyl-2-pyrones [10-12] annulated heterocycles. Our success in the sequential Claisen rearrangements of coumarin [13] and dithiocoumarin systems [14] prompted us to undertake a study on the thermal rearrangement of 4-[(3-aryloxy-2-propynyl)oxy]-6-methyl-pyran-2-thiones. Herein we report the results. The substrates 3a-f for this purpose have been synthesized [15] in $55-60 \%$ yield from 4-hydroxy-6-methyl-2-pyrones 1 and 1-aryloxy-4-chloro-but-2-ynes 2 by refluxing in dry acetone, anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ and a catalytic amount of sodium iodide (Finkelstein condition).

## RESULTS AND DISCUSSION

We have reported the synthesis of pyrano- [15], pyrido[16] and thiopyranopyrones [10] fused at 3,4 position of the pyrone nucleus by the application of the sigmatropic
rearrangements. Usually sigmatropic rearrangements of 4-[(4'-aryloxy-2'-propynyl)-oxy, thio or amino]-pyran-2ones are known to provide access to angularly fused heterocycles $[15,16]$. Here we have changed the strategy by thionation of the pyrone carbonyl. We felt that this may change the mode of cyclization for the formation of a new heterocyclic ring since sulfur is more nucleophilic than oxygen. With this in view, the 4-[(3-aryloxy-2-propynyl)oxy]-6-methyl-pyran-2-ones were subjected to thionation [17] with $\mathrm{P}_{2} \mathrm{~S}_{5}$ in refluxing benzene for 1-2 h to give 4-[(3-aryloxy-2-propynyl)oxy]-6-methyl-pyran-2thiones 4a-f in $75-80 \%$ yield (Scheme I).


The products 4a-h were characterized from their elemental analyses and spectroscopic data. Disappearance of carbonyl stretching frequency in the ir spectra of compounds $\mathbf{4 a - h}$ clearly indicates the formation of $-\mathrm{C}=\mathrm{S}$
from $-\mathrm{C}=\mathrm{O}$. The substrates $\mathbf{4 a - f}$ were then refluxed in $o$ dichlorobenzene for $1-2 \mathrm{~h}$ to give $\mathbf{5 a}$-f in $80-85 \%$ yield (Scheme II).

## Scheme II



The compounds 5a-f were characterized from their elemental analyses and spectroscopic data. The ${ }^{1} \mathrm{H}$ NMR spectrum of 5a showed signals at $\delta 3.50(\mathrm{~d}, J=5.6 \mathrm{~Hz}$, $2 \mathrm{H}), 5.17(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 2 \mathrm{H})$ and a one proton double triplet at $\delta 6.03(J=5.6 \mathrm{~Hz}, J=1.3 \mathrm{~Hz})$ indicating the formation of a six-membered thiopyran ring fused at the 2,3 position of the pyrone nucleus. Although substrates 4a-f possess two potential sites for [3,3] sigmatropic rearrangement - aryl propargyl ether moiety and a vinyl propargyl sulfide moiety. All the substrates underwent a [3,3] sigmatropic rearrangement at the vinyl propargyl sulfide moiety to give the products 5a-f. The formation of products 5a-f may be explained by considering an initial [3,3] sigmatropic rearrangement in 4a-f to give allenyl intermediates 6a-f. Enolisation followed by cyclisation via $1,5-\mathrm{H}$ shift and subsequent $6 \pi$-electrocyclic ring closure may afford products 5a-f (Scheme III). It is remarkable to note that all the substrates $\mathbf{4 a - f}$ studied at this instance regioselectively afforded exclusively products 5a-f.

## Scheme III



As the products still possess the allyl aryl ether moiety, these were subjected to heating in refluxing $o$-dichlorobenzene in the presence of $\mathrm{N}, \mathrm{N}$-diethyl aniline for $6-7 \mathrm{~h}$ to give the phenolic products 10a-f in $76-83 \%$ yield (Scheme IV).

The compounds 10a-f were characterized from their elemental analyses and spectroscopic data. A peak in the region $3290 \mathrm{~cm}^{-1}$ in the IR spectrum appeared due to the

## Scheme IV


presence of phenolic -OH group in the compound $\mathbf{1 0 a} .{ }^{1} \mathrm{H}$ NMR spectrum of the compound 10a showed signal at $\delta$ $5.26(\mathrm{~s}, 1 \mathrm{H})$ and $5.78(\mathrm{~s}, 1 \mathrm{H})$ indicating the presence of an exocyclic double bond in the compound $\mathbf{1 0 a}$.

Here also the isolation of the phenolic products is quite unusual. In most of the previous instances either the formation of cyclic product or rearranged phenolic products were reported $[18,19]$. The formation of 10a-f from 5a-f is easily explained by a $[3,3]$ sigmatropic rearrangement followed by enolisation (Scheme V).


Our target was to synthesize polyheterocyclic compounds. We have earlier used pyridine hydrotribromide [20], hexamine hydrotribromide [21] and N -iodosuccinimide [22] for regioselective cyclization of $o$-cyclo-hex-2-ynyl phenols. We therefore treated products 10a-f with one equivalent of pyridine hydrotribromide at $0-5^{\circ} \mathrm{C}$ for $1-1.5 \mathrm{~h}$ to give the products $\mathbf{1 2 a - f}$ in almost quantitative yield ( $94-96 \%$ yield) (Scheme VI).

Scheme VI


The products 12a-f were characterized from their elemental analyses and spectroscopic data. Disappearance of phenolic -OH group in the IR spectrum and two oneproton singlets (due to exocyclic double bond) in the ${ }^{1} \mathrm{H}$ NMR spectrum confirmed the formation of compound

12a. The formation of the products can easily be explained by the formation of a cyclic bromonium ion followed by a "6-endo" cyclisation to give angularly fused [6,6] pyranothiopyrans (Scheme VII).


The Stereochemistry of the ring fusion of the cyclic system can only be surmised from the molecular models (Dreiding Model), which showed a strain free cisarrangement.
Summing up we have developed new, simple and practical synthesis of potentially bioactive polyheterocycles, 12c-Bromo-2-methyl-10b,12c-dihydro- $4 H, 5 H, 11 H$ trihydropyrano[ $\left.3^{\prime}, 4^{\prime}: 5,6\right]$ thiopyrano[3,2-c]benzopyran-4ones by the conversion of carbonyl to thiocarbonyl in the substrate and application of two consecutive [3,3] sigmatropic rearrangements.

## EXPERIMENTAL

Melting points were determined in an open capillary and are uncorrected. IR spectra were recorded on a Perkin-Elmer L120000A spectrometer ( $v_{\text {max }}$ in $\mathrm{cm}^{-1}$ ) on KBr disks. UV absorption spectra were recorded in EtOH on a Shimadzu UV-2401PC spectrophotometer ( $\lambda_{\text {max }}$ in nm ). ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, 500 \mathrm{MHz}$ ) and ${ }^{13} \mathrm{C}$ NMR ( $75.5 \mathrm{MHz}, 125 \mathrm{MHz}$ ) spectra were recorded on a Bruker DPX-300 and Bruker DPX-500 spectrometer in $\mathrm{CDCl}_{3}$ (chemical shift in $\delta$ ) with TMS as internal standard. Mass spectra was recorded on a JEOL JMS-600 instrument. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at the Indian Institute of Chemical Biology, Kolkata and Bose Institute, Kolkata. Silica gel [(60-120 mesh), Spectrochem, India] was used for chromatographic separation. Silica gel G [E-Merck (India)] was used for TLC. Petroleum ether refers to the fraction boiling between $60^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$.
General procedure for the synthesis of 4-[(3-aryloxy-2-propynyl)oxy]-6-methyl-2H-pyran-2-ones (3a-f). A mixture of 1-aryloxy-4-chlorobut-2-ynes ( 10 mmol ) (2), 4-hydroxy-6-methyl-2-pyrone ( $1.26 \mathrm{~g}, 10 \mathrm{mmol}$ ) (1), anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(3 \mathrm{~g})$ and $\mathrm{NaI}(0.06 \mathrm{~g})$ were refluxed in dry acetone for $4-5 \mathrm{~h}$. The reaction mixture was cooled; removal of the solvent from the filtrate gave a gummy mass. The gummy mass was subjected to column chromatography over silica gel. Elution of the column with 1:9 ethylacetate-petroleum ether gave the compounds 3a-f.

Compound 3a. Yield: $60 \%$, sticky liquid; ir (neat) $v_{\max }=$ 1720, 1580, 1250, $1130 \mathrm{~cm}^{-1}$; uv (EtOH): $\lambda_{\text {max }}=220,280 \mathrm{~nm}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta=2.23(\mathrm{~s}, 3 \mathrm{H}), 4.69(\mathrm{t}, J=1.6 \mathrm{~Hz}$, $2 \mathrm{H}), 4.81(\mathrm{t}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.47(\mathrm{~s}, 1 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 6.93-$ $7.40(\mathrm{~m}, 3 \mathrm{H}) ; \mathrm{ms}: \mathrm{m} / \mathrm{z}=338,340,342\left(\mathrm{M}^{+}\right)$. Anal Calcd. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{Cl}_{2}$ : C, 56.64; H, 3.54; Found C, $56.71 ; \mathrm{H}, 3.64 \%$.
Compound 3b. Yield: $58 \%$; sticky liquid; ir (neat) $v_{\text {max }}=$ 1720, 1580, 1250, $1140 \mathrm{~cm}^{-1}$; uv (EtOH): $\lambda_{\text {max }}=216,277 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3} 300 \mathrm{MHz}\right): \delta=2.21(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 4.68(\mathrm{t}, \mathrm{J}$ $=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.79(\mathrm{t}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.46(\mathrm{~s}, 1 \mathrm{H}), 5.77(\mathrm{~s}$, $1 \mathrm{H}), 6.87-7.34(\mathrm{~m}, 3 \mathrm{H}) ; \mathrm{ms}: m / z=318,320\left(\mathrm{M}^{+}\right)$. Anal Calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{Cl}$ : C, 64.05 ; H, 4.71; Found C, 64.25; H, 4.89\%.

Compound 3c. Yield: $55 \%$; sticky liquid; ir (neat) $v_{\text {max }}=$ 1720, 1580, 1250, $1130 \mathrm{~cm}^{-1}$; uv (EtOH): $\lambda_{\text {max }}=216,277 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=2.19(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}$, $3 \mathrm{H}), 4.67(\mathrm{t}, \mathrm{J}=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.71(\mathrm{t}, \mathrm{J}=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.48(\mathrm{~s}$, $1 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 6.76-6.96(\mathrm{~m}, 3 \mathrm{H}) ; \mathrm{ms}: \mathrm{m} / \mathrm{z}=298\left(\mathrm{M}^{+}\right)$. Anal Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4}$ : C, 72.48; H, 6.04; Found C, 72.56; H, 6.25\%.

Compound 3d. Yield: $55 \%$; sticky liquid; ir (neat) $\boldsymbol{v}_{\max }=$ 1720, 1580, 1250, $1130 \mathrm{~cm}^{-1}$; uv (EtOH): $\lambda_{\text {max }}=214,278 \mathrm{~nm}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3,}, 500 \mathrm{MHz}\right) \delta=2.15(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.26$ $(\mathrm{s}, 3 \mathrm{H}), 4.68(\mathrm{t}, \mathrm{J}=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.73(\mathrm{t}, \mathrm{J}=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.48(\mathrm{~s}$, $1 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 6.75-7.06(\mathrm{~m}, 3 \mathrm{H}) ; \mathrm{ms}: \mathrm{m} / \mathrm{z}=298\left(\mathrm{M}^{+}\right)$. Anal Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4}$ : C, 72.48 ; H, 6.04; Found C, 72.61 ; H, 6.18\%.

Compound 3f. Yield: $60 \%$; sticky liquid; ir (neat) $v_{\text {max }}=$ 1720, 1580, 1250, $1130 \mathrm{~cm}^{-1}$; uv (EtOH): $\lambda_{\max }=216,280 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=1.29(\mathrm{~s}, 9 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 4.68(\mathrm{t}, J$ $=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.70(\mathrm{t}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.48(\mathrm{~s}, 1 \mathrm{H}), 5.78(\mathrm{~s}$, $1 \mathrm{H}), 6.83-7.31(\mathrm{~m}, 4 \mathrm{H}) ; \mathrm{ms}: m / z=326\left(\mathrm{M}^{+}\right)$. Anal Calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4}: \mathrm{C}, 73.62 ; \mathrm{H}, 6.75$; Found C, $73.85 ; \mathrm{H}, 6.94 \%$.

Compound 3 e was prepared according to the published procedure [15].
General Procedure for the Synthesis of 4-[(3-Aryloxy-propynyl)oxy)]-6-methyl-2H-pyran-2-thiones (4a-f). A mixture of 4-[(3-aryloxy-2-propynyl)oxy]-6-methyl-2H-pyran-2-ones 3a-f ( 2 mmol ) and $\mathrm{P}_{2} \mathrm{~S}_{5}(3 \mathrm{mmol})$ were refluxed in anhydrous benzene ( 50 ml ) on a water bath for 1-2 h . The reaction mixture was then cooled, solid residue was extracted with benzene ( $3 \times 25 \mathrm{ml}$ ) and the combined benzene layer was washed with water, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of solvent gave a gummy mass, which was then chromatographed over silica gel. Sticky liquids were obtained when all the columns were eluted with 1: 9.5 ethyl acetate-petroleum ether.

Compound 4a. Yield: $80 \%$, sticky liquid; ir (neat) $v_{\text {max }}=$ 1651, 1542, 1457, $1090 \mathrm{~cm}^{-1}$; uv (EtOH): $\lambda_{\text {max }}=358,281,229$ $\mathrm{nm} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3,} 300 \mathrm{MHz}\right) \delta=2.36(\mathrm{~s}, 3 \mathrm{H}), 4.73(\mathrm{t}, J=1.7$ $\mathrm{Hz}, 2 \mathrm{H}$ ), $4.82(\mathrm{t}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H})$, 6.93-7.39 (m, 3H); ms: $m / z=354,356,358\left(\mathrm{M}^{+}\right)$. Anal Calcd. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{SCl}_{2}$ : C, 54.08 ; H, 3.38; Found C, $54.28 ; \mathrm{H}, 3.59 \%$.
Compound 4b. Yield: $80 \%$, sticky liquid; ir (neat) $\boldsymbol{v}_{\text {max }}=$ 1650, 1540, 1459, $1085 \mathrm{~cm}^{-1}$; uv (EtOH): $\lambda_{\text {max }}=355,281,229$ $\mathrm{nm} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=2.19(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H})$, $4.70(\mathrm{t}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.73(\mathrm{t}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H})$, $6.71(\mathrm{~s}, 1 \mathrm{H}), 6.76-7.11(\mathrm{~m}, 3 \mathrm{H}) ; \mathrm{ms}: m / z=334,336\left(\mathrm{M}^{+}\right)$. Anal Calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{SCl}$ : C, 60.99 ; H, 4.48; Found C, 61.15 ; H, 4.69\%.

Compound 4c. Yield: 75\%, sticky liquid; ir (neat) $v_{\max }=$ 1651, 1537, 1452, $1088 \mathrm{~cm}^{-1}$; uv (EtOH): $\lambda_{\text {max }}=358,280,227$ $\mathrm{nm} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=2.19(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H})$, 2.33 (s, 3H), 4.73 (s, 4H, OCH $)$ ), $6.05(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H})$,
6.75-6.96 (m, 3H, ArH); ms: $m / z=314\left(\mathrm{M}^{+}\right)$. Anal Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 68.79$; H, 5.73; Found C, 68.95 ; H, $5.65 \%$.

Compound 4d. Yield: $75 \%$, sticky liquid; ir (neat) $v_{\max }=$ $1650,1537,1450,1090 \mathrm{~cm}^{-1}$; uv (EtOH): $\lambda_{\max }=358,280,227$ $\mathrm{nm} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 500 \mathrm{MHz}\right) \delta=2.15(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H})$, $2.34(\mathrm{~s}, 3 \mathrm{H}), 4.72(\mathrm{t}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.73(\mathrm{t}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.05$ $(\mathrm{s}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 6.74-7.09(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}) ; \mathrm{ms}: \mathrm{m} / \mathrm{z}=$ 314(M+). Anal Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 68.79$; H, 5.73; Found C, 68.87; H, 5.97\%.

Compound 4e. Yield: $80 \%$, sticky liquid; ir (neat) $v_{\max }=$ $1651,1537,1452,1088 \mathrm{~cm}^{-1}$; uv (EtOH): $\lambda_{\max }=358,280,227$ $\mathrm{nm} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3,} 500 \mathrm{MHz}\right) \delta=2.34(\mathrm{~s}, 3 \mathrm{H}), 4.72(\mathrm{t}, J=1.7$ $\mathrm{Hz}, 2 \mathrm{H}), 4.83(\mathrm{t}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.96-$ $7.38(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}) ; \mathrm{ms}: m / z=320,322\left(\mathrm{M}^{+}\right)$. Anal Calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{SCl}$ : C, $59.91 ; \mathrm{H}, 4.06$; Found C, $60.15 ; \mathrm{H}, 4.26 \%$.

Compound $4 \mathbf{f}$. Yield: $75 \%$, sticky liquid; ir (neat) $v_{\max }=$ 1650, 1540, 1451, $1090 \mathrm{~cm}^{-1}$; uv (EtOH): $\lambda_{\max }=358,281,229$ $\mathrm{nm} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=1.30(\mathrm{~s}, 9 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H})$, $4.66(\mathrm{t}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.72(\mathrm{t}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H})$, $6.74(\mathrm{~s}, 1 \mathrm{H}), 6.86-7.33(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}) ; \mathrm{ms}: m / z=342\left(\mathrm{M}^{+}\right)$. Anal Calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 70.18$; $\mathrm{H}, 6.43$; Found $\mathrm{C}, 70.35$; H , $6.56 \%$.

General Procedure for the Synthesis of 5-[(Aryloxy)methyl]-2-methyl-4H,7H-thiopyrano[2,3-b]pyran-4-ones (5a-f). 4-[(3-Aryloxy-propynyl)oxy)]-6-methyl-2H-pyran-2-thiones 4a-f (500 mg ) were refluxed in $o$-dichlorobenzene ( 5 ml ) for $1-2 \mathrm{~h}$. The reaction mixture was then cooled and directly subjected to column chromatography over silica gel. o-Dichlorobenzene was eluted out with petroleum ether. All the compounds 5a-f were obtained as white solid when the columns were eluted with 1:6.5 ethyl acetate-petroleum ether.

Compound 5a. Yield: $85 \%$, white solid, mp $140-142^{\circ} \mathrm{C}$; ir $(\mathrm{KBr}) \nu_{\max }=1728,1659,1609,1481,1290 \mathrm{~cm}^{-1}$; uv (EtOH): $\lambda_{\max }=284,259,246,221 \mathrm{~nm}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3,} 300 \mathrm{MHz}\right) \delta=$ $2.26(\mathrm{~s}, 3 \mathrm{H}), 3.50\left(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{SCH}_{2}\right), 5.17(\mathrm{~d}, J=1.3 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.05(\mathrm{~s}, 1 \mathrm{H}), 6.03(\mathrm{tt}, J=1.3 \mathrm{~Hz}, 5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.90$ $(\mathrm{d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.13-7.17(\mathrm{dd}, J=8.8 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), $7.34(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) ; 13_{\mathrm{C}} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}) \delta \mathrm{c}=19.07,21.35,69.7,108.4,118.2,123.1,123.2,125.7$, $124.49,127.32,139.08,152.99,155.0,161.5,183.4(-\mathrm{C}=\mathrm{O}) ; \mathrm{ms}$ : $m / z=354,356,358\left(\mathrm{M}^{+}\right)$. Anal Calcd. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{SCl}_{2}: \mathrm{C}$, 54.08 ; H, 3.38; Found C, 54.32; H, 3.42\%.

Compound 5b. Yield: $80 \%$, white solid, mp $150-152^{\circ} \mathrm{C}$; ir $(\mathrm{KBr}) v_{\max }=1726,1657,1480,1292 \mathrm{~cm}^{-1}$; uv $(\mathrm{EtOH}): \lambda_{\text {max }}=$ $281,258,246,220 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta=2.20(\mathrm{~s}$, $3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 3.49\left(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{SCH}_{2}\right), 5.09(\mathrm{~d}, J=1.5$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.05(\mathrm{~s}, 1 \mathrm{H}), 5.92-5.96(\mathrm{tt}, J=1.5 \mathrm{~Hz}, 5.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.76(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.05(\mathrm{dd}, J=8.2 \mathrm{~Hz}, 2.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}), 7.08(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) ; \mathrm{ms}: \mathrm{m} / \mathrm{z}=334$, 336(M+). Anal Calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{SCl}$ : C, 60.99 ; H, 4.84; Found C, 61.20; H, 4.76\%.

Compound 5c. Yield: $80 \%$, white solid, mp $130-132^{\circ} \mathrm{C}$; ir $(\mathrm{KBr}) v_{\max }=1662,1617,1504,1255 \mathrm{~cm}^{-1}$; uv $(\mathrm{EtOH}): \lambda_{\max }=$ 279, 257, 246, $220 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta=2.21(\mathrm{~s}$, $3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 3.48\left(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{SCH}_{2}\right)$, $5.09\left(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.05(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{tt}, J=1.6 \mathrm{~Hz}$, $5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.74-6.93(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}) ; \mathrm{ms}: m / z=314\left(\mathrm{M}^{+}\right)$. Anal Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~S}$ : C, 68.79; H, 5.73; Found C, 68.89; H, 5.82\%.

Compound 5d. Yield: $82 \%$, white solid, mp $127-129^{\circ} \mathrm{C}$; ir $(\mathrm{KBr}) \nu_{\max }=1726,1655,1500,1250 \mathrm{~cm}^{-1}$; uv $(\mathrm{EtOH}): \lambda_{\max }=$ $278,255,247,222 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta=2.26(\mathrm{~s}$,
$3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 3.49\left(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{SCH}_{2}\right)$, $5.10\left(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 5.97(\mathrm{tt}, J=1.5 \mathrm{~Hz}, 5.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.05(\mathrm{~s}, 1 \mathrm{H}), 6.74-7.04(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}) ; \mathrm{ms}: m / z=314\left(\mathrm{M}^{+}\right)$. Anal Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~S}$ : C, 68.79; H, 5.73; Found C, 68.84; H, 5.87\%.

Compound 5e. Yield: $80 \%$, white solid, mp $125-127^{\circ} \mathrm{C}$; ir $(\mathrm{KBr}) \nu_{\max }=1726,1658,1480,1288 \mathrm{~cm}^{-1}$; uv $(\mathrm{EtOH}): \lambda_{\max }=$ 282, 259, 247, $221 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=2.26(\mathrm{~s}$, $3 \mathrm{H}), 3.51\left(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{SCH}_{2}\right), 5.19(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{OCH}_{2}\right), 6.09(\mathrm{tt}, \mathrm{J}=1.5 \mathrm{~Hz}, 5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{ddd}$, $J=1.3 \mathrm{~Hz}, 7.8 \mathrm{~Hz}, 8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.99(\mathrm{dd}, J=1.3 \mathrm{~Hz}, 8.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.17$ (ddd, $J=1.5 \mathrm{~Hz}, 8.2 \mathrm{~Hz}, 7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$ ), $7.33(\mathrm{dd}, J=1.5 \mathrm{~Hz}, 7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) ; \mathrm{ms}: m / z=320,322\left(\mathrm{M}^{+}\right)$. Anal Calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{SCl}$ : C, 59.91; H, 4.06; Found C, 60.21; H, 4.12\%.

Compound 5f. Yield: $78 \%$, sticky liquid; ir (neat) $v_{\max }=$ 1726, 1652, 1485, $1290 \mathrm{~cm}^{-1}$; uv (EtOH): $\lambda_{\max }=282,258,246$, $223 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=1.28(\mathrm{~s}, 9 \mathrm{H}), 2.25(\mathrm{~s}$, $3 \mathrm{H}), 3.48\left(\mathrm{~d}, J=5.75 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{SCH}_{2}\right), 5.10(\mathrm{~d}, J=1.25 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{OCH}_{2}\right), 5.95(\mathrm{tt}, J=1.25 \mathrm{~Hz}, 5.75 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.25(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}) ; \mathrm{ms}: m / z=$ 342(M+). Anal Calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 70.18 ; \mathrm{H}, 6.43$; Found C, 70.27; H, 6.55\%.
General Procedure for the Synthesis of 6-(2-Hydroxyaryl)-2-methyl-5-methylene-6,7-dihydrothiopyrano[2,3-b]pyran$4(5 H)$-ones (10a-f). 5-[(Aryloxy)methyl]-2-methyl-4H,7H-thiopyrano[2,3-b]pyran-4-ones 5a-f ( 300 mg ) were refluxed in $o$-dichlorobenzene ( 5 ml ) in the presence of $N, N$-diethylaniline ( $7-8$ drops) for about 6-7 h . Then the reaction mixture was allowed to cool and directly subjected to column chromatography over silica gel. All the compounds 10a-f were obtained as white solid when the columns were eluted with $1: 5$ ethyl acetate-petroleum ether.

Compound 10a. Yield: $82 \%$, white solid, mp $190-192^{\circ} \mathrm{C}$; ir $(\mathrm{KBr}) \nu_{\max }=3290,1660,1403,1159 \mathrm{~cm}^{-1}$; uv $(\mathrm{EtOH}): \lambda_{\max }=$ 293, 235, $217 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=2.23(\mathrm{~s}, 3 \mathrm{H})$, $3.31\left(\mathrm{dd}, J=12.3 \mathrm{~Hz}, 7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SCH}_{2}\right), 3.51(\mathrm{dd}, J=12.3 \mathrm{~Hz}$, $\left.3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SCH}_{2}\right), 4.28(\mathrm{dd}, J=7.1 \mathrm{~Hz}, 3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~s}$, $\left.1 \mathrm{H},=\mathrm{CH}_{2}\right), 5.78\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 6.10(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 6.96$ (brs, $2 \mathrm{H}, \mathrm{ArH}$ ); ms: $m / z=354,356,358\left(\mathrm{M}^{+}\right)$. Anal Calcd. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{SCl}_{2}$ : C, $54.08 ; \mathrm{H}, 3.38$; Found C, $54.27 ; \mathrm{H}, 3.51 \%$.

Compound 10b. Yield: $80 \%$, white solid, mp $180-182^{\circ} \mathrm{C}$; ir $(\mathrm{KBr}) \nu_{\max }=3300,1665,1405,1160 \mathrm{~cm}^{-1}$; uv (EtOH): $\lambda_{\max }=$ 290, 225, $215 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta=2.23(\mathrm{~s}, 6 \mathrm{H})$, $3.22\left(\mathrm{dd}, J=12.6 \mathrm{~Hz}, 3.38 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SCH}_{2}\right), 3.50(\mathrm{dd}, J=12.6$ $\left.\mathrm{Hz}, 7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SCH}_{2}\right), 4.15(\mathrm{dd}, J=7.8 \mathrm{~Hz}, 3.38 \mathrm{~Hz}, 1 \mathrm{H}), 5.02$ $\left(\mathrm{s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 5.21\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 6.09(\mathrm{~s}, 1 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H})$, $6.84(\mathrm{~d}, J=2.18 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.04(\mathrm{~d}, J=2.18 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$; $\mathrm{ms}: m / z=334,336\left(\mathrm{M}^{+}\right)$. Anal Calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{SCl}: \mathrm{C}$, 60.99; H, 4.84; Found C, 61.16; H, $4.90 \%$.

Compound 10c. Yield: $83 \%$, white solid, mp $175-177^{\circ} \mathrm{C}$; ir $(\mathrm{KBr}) \nu_{\max }=3290,1655,1591,1395 \mathrm{~cm}^{-1}$; uv (EtOH): $\lambda_{\max }=$ 282, 218, $205 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta=2.20(\mathrm{~s}, 3 \mathrm{H})$, $2.22(\mathrm{~s}, 6 \mathrm{H}), 3.21\left(\mathrm{dd}, J=12.1 \mathrm{~Hz}, 6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SCH}_{2}\right), 3.57$ (dd, $\left.J=12.1 \mathrm{~Hz}, 2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SCH}_{2}\right), 4.14(\mathrm{dd}, J=6.8 \mathrm{~Hz}, 2.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.02\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 5.20\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 6.10(\mathrm{~s}, 1 \mathrm{H}), 6.66$ (s, 1H), 6.79 (s, 1H, ArH), 6.87 (brs, 1 H, ArH); ms: m/z $=314\left(\mathrm{M}^{+}\right)$. Anal Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 68.79$; H, 5.73; Found C, 68.91 ; H, $5.84 \%$.

Compound 10d. Yield: $76 \%$, White solid, mp $170-172^{\circ} \mathrm{C}$; ir $(\mathrm{KBr}) \nu_{\max }=3310,1650,1590,1395 \mathrm{~cm}^{-1}$; uv $(\mathrm{EtOH}): \lambda_{\max }=$ $280,219,205 \mathrm{~nm} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=2.16(\mathrm{~s}, 3 \mathrm{H})$,
2.21 (s, 3H), 2.26 (s, 3H), 3.25 (dd, $J=12.4 \mathrm{~Hz}, 3 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{SCH}_{2}$ ), 3.57 (dd, $\left.J=12.4 \mathrm{~Hz}, 7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SCH}_{2}\right), 4.14(\mathrm{dd}, J=$ $7.9 \mathrm{~Hz}, 3 \mathrm{~Hz}, 1 \mathrm{H}), 4.88\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 5.23\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 6.08$ $(\mathrm{s}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.76(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{ArH}), 6.80(\mathrm{~s}, 1 \mathrm{H}) ; \mathrm{ms}: m / z=314\left(\mathrm{M}^{+}\right)$. Anal Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 68.79 ; \mathrm{H}, 5.73$; Found C, $68.94 ; \mathrm{H}, 5.77 \%$.

Compound 10e. Yield: $80 \%$, white solid, mp $160-162^{\circ} \mathrm{C}$; ir (KBr) $v_{\text {max }}=3290,1657,1591,1407 \mathrm{~cm}^{-1}$; uv (EtOH): $\lambda_{\text {max }}=$ $284,236,221 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=2.22(\mathrm{~s}, 3 \mathrm{H})$, 3.33 (dd, $J=12.7 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SCH}_{2}$ ), $3.58(\mathrm{dd}, J=12.7 \mathrm{~Hz}$, $5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SCH}_{2}$ ), 4.29 (dd, $\left.J=5.8 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.28$ (s, $\left.1 \mathrm{H},=\mathrm{CH}_{2}\right), 5.81\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 6.11(\mathrm{~s}, 1 \mathrm{H}), 6.76-6.89(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{ArH} \&-\mathrm{OH}) ; \mathrm{ms}: m / z=320,322\left(\mathrm{M}^{+}\right)$. Anal Calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{SCl}$ : C, $59.91 ; \mathrm{H}, 4.06$; Found C, 60.17 ; H, $4.19 \%$.

Compound 10f. Yield: $78 \%$, white solid, mp $155-157^{\circ} \mathrm{C}$; ir $(\mathrm{KBr}) v_{\text {max }}=3289,1655,1591,1508,1395 \mathrm{~cm}^{-1}$; uv (EtOH): $\lambda_{\text {max }}$ $=287,227 \mathrm{~nm}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3,} 500 \mathrm{MHz}\right) \delta=1.21(\mathrm{~s}, 9 \mathrm{H}), 2.21$ (s, 3H), 3.25 (dd, $J=12.1 \mathrm{~Hz}, 3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SCH}_{2}$ ), $3.65(\mathrm{dd}, J=$ $\left.12.1 \mathrm{~Hz}, 8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SCH}_{2}\right)$, $4.16(\mathrm{dd}, J=8.2 \mathrm{~Hz}, 3.3 \mathrm{~Hz}, 1 \mathrm{H})$, $5.13\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 5.22\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 6.09(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~d}, \mathrm{~J}=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$ ), $6.76(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.14(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}) ; \mathrm{ms}: m / z=342\left(\mathrm{M}^{+}\right)$. Anal Calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}$, 70.18; H, 6.43; Found C, 70.29; H, 6.58\%.

General Procedure for the Synthesis of 12c-Bromo-2-methyl-10b,12c-dihydro-4H,5H,11H-trihydropyrano[ $3^{\prime}, \mathbf{4}^{\prime}$ : 5,6]thiopyrano[3,2-c]benzopyran-4-ones (12a-f). 6-(2-Hydroxyaryl)-2-methyl-5-methylene-6,7-dihydrothiopyrano[2,3$b$ ]pyran- $4(5 \mathrm{H}$ )-ones 10a-f ( 100 mg ) were treated with one equivalent of pyridine hydrotribromide in chloroform at $0-5^{\circ} \mathrm{C}$ for about 1-1.5 h. The reaction mixture was washed with $10 \%$ sodium bisulfite, water and brine. Finally it was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Column chromatography was performed and all the compounds 12a-f were eluted with 1:9 ethyl acetatepetroleum ether to give white crystalline solids.
Compound 12a. Yield: $95 \%$, white solid, mp $205-207^{\circ} \mathrm{C}$; ir $(\mathrm{KBr}) v_{\text {max }}=1664,1618,1460,1388 \mathrm{~cm}^{-1}$; uv ( EtOH ): $\lambda_{\text {max }}=$ $276,232,216 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=2.24(\mathrm{~s}, 3 \mathrm{H})$, 2.92 (dd, $J=13.2 \mathrm{~Hz}, 10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{dd}, J=4.0 \mathrm{~Hz}, 13.2$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{SCH}_{2}\right), 3.56\left(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.99(\mathrm{dd}, J=$ $\left.4.0 \mathrm{~Hz}, 10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SCH}_{2}\right), 4.87\left(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right)$, $6.08(\mathrm{~s}, 1 \mathrm{H}), 7.2(\mathrm{~s}, 1 \mathrm{H}, \operatorname{ArH}), 7.23(\mathrm{~s}, 1 \mathrm{H}, \operatorname{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta_{\mathrm{c}}=19.5,30.9\left(\mathrm{C}_{11}\right), 49.85\left(\mathrm{C}_{10 \mathrm{~b}}\right), 60.2\left(\mathrm{C}_{12 \mathrm{c}}\right)$, $76.57\left(\mathrm{C}_{5}\right), \quad 110.5\left(\mathrm{C}_{3}\right), \quad 117.5\left(\mathrm{C}_{10 \mathrm{a}}\right), \quad 119.2\left(\mathrm{C}_{12 \mathrm{~b}}\right), \quad 127.0\left(\mathrm{C}_{7}\right)$, $127.2\left(\mathrm{C}_{10}\right), \quad 129.0\left(\mathrm{C}_{9}\right), \quad 129.5\left(\mathrm{C}_{8}\right), \quad 154.7\left(\mathrm{C}_{64}\right), \quad 166.7\left(\mathrm{C}_{2}\right)$, $173.9\left(\mathrm{C}_{12 \mathrm{a}}\right), 183.06(-\mathrm{C}=\mathrm{O}) ; \mathrm{ms}: m / z=432,434,436,438\left(\mathrm{M}^{+}\right)$. Anal Calcd. for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{SBrCl}_{2}$ : C, 44.24; H, 2.53; Found C, 44.36; H, 2.67\%.

Compound 12b. Yield: $94 \%$, white solid, mp $200-202^{\circ} \mathrm{C}$; ir $(\mathrm{KBr}) v_{\text {max }}=1670,1620,1460,1390 \mathrm{~cm}^{-1}$; uv ( EtOH ): $\lambda_{\text {max }}=$ $275,230,220 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=2.19(\mathrm{~s}, 3 \mathrm{H})$, $2.24(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{dd}, J=12.6 \mathrm{~Hz}, 10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{dd}, J=$ $\left.3.1 \mathrm{~Hz}, 12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SCH}_{2}\right), 3.52\left(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right)$, $3.89\left(\mathrm{dd}, J=3.1 \mathrm{~Hz}, 10.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SCH}_{2}\right), 4.80(\mathrm{~d}, J=9.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{OCH}_{2}$ ), $6.07(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.03(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH})$; ms: $m / z=412,414,416\left(\mathrm{M}^{+}\right)$. Anal Calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{SBrCl}$ : C, 49.34; H, 3.38; Found C, 49.52; H, 3.49\%.

Compound 12c. Yield: $95 \%$, white solid, mp $190-192^{\circ} \mathrm{C}$; ir $(\mathrm{KBr}) \mathrm{v}_{\text {max }}=1660,1480,1390 \mathrm{~cm}^{-1}$; uv (EtOH): $\lambda_{\text {max }}=276,260$, $218 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=2.19(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}$, 3 H ), 2.27 ( $\mathrm{s}, 3 \mathrm{H}$ ), 2.88 (dd, $J=12.2 \mathrm{~Hz}, 10.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.11 (dd, $\left.J=3.0 \mathrm{~Hz}, 10.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SCH}_{2}\right), 3.52\left(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right)$, $3.84\left(\mathrm{dd}, J=3.0 \mathrm{~Hz}, 12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SCH}_{2}\right), 4.81(\mathrm{~d}, J=9.2 \mathrm{~Hz}$,
$\left.1 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.07(\mathrm{~s}, 1 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 6.86(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH})$; $\mathrm{ms}: m / z=392,394\left(\mathrm{M}^{+}\right)$. Anal Calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{SBr}$ : C, 54.96; H, 4.32; Found C, 55.12; H, 4.51\%.

Compound 12d. Yield: $96 \%$, white solid, $\mathrm{mp} 185-187^{\circ} \mathrm{C}$; ir $(\mathrm{KBr}) \nu_{\text {max }}=1665,1480,1388 \mathrm{~cm}^{-1}$; uv (EtOH): $\lambda_{\text {max }}=280,262$, $220 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=2.19(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}$, $3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.87(\mathrm{dd}, J=13.1 \mathrm{~Hz}, 10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.11$ (dd, $\left.J=3.8 \mathrm{~Hz}, 13.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SCH}_{2}\right), 3.52\left(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right)$, $3.88\left(\mathrm{dd}, J=3.8 \mathrm{~Hz}, 10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SCH}_{2}\right), 4.79(\mathrm{~d}, J=9.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{OCH}_{2}$ ), $6.07(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.86(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$; ms: $m / z=392,394\left(\mathrm{M}^{+}\right)$. Anal Calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{SBr}$ : C, 54.96; H, 4.32; Found C, 55.16 ; H, $4.41 \%$.

Compound 12e. Yield: $96 \%$, white solid, mp $175-177^{\circ} \mathrm{C}$; ir $(\mathrm{KBr}) v_{\text {max }}=1663,1614,1391 \mathrm{~cm}^{-1}$; uv (EtOH): $\lambda_{\text {max }}=351,277$, $218 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta_{\mathrm{H}}=2.24(\mathrm{~s}, 3 \mathrm{H}), 2.92(\mathrm{dd}$, $J=13.2 \mathrm{~Hz}, 11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=4.1 \mathrm{~Hz}, 13.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{SCH}_{2}$ ), $3.55\left(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.98(\mathrm{dd}, J=4.1 \mathrm{~Hz}$, $\left.11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SCH}_{2}\right), 4.89\left(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.10(\mathrm{~s}$, $1 \mathrm{H}), 6.88(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.13(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 7.21 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$ ); ms: $m / z=398,400$, 402( $\mathrm{M}^{+}$). Anal Calcd. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{SBrCl}: \mathrm{C}, 48.06$; $\mathrm{H}, 3.0$; Found C, 48.21; H, 3.13\%.

Compound 12f. Yield: $94 \%$, white solid, mp $170-172^{\circ} \mathrm{C}$; ir $(\mathrm{KBr}) \boldsymbol{v}_{\text {max }}=1661,1619,1487,1392 \mathrm{~cm}^{-1}$; uv (EtOH): $\lambda_{\text {max }}=$ 278, 230, $218 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=1.30(\mathrm{~s}, 9 \mathrm{H})$, $2.24(\mathrm{~s}, 3 \mathrm{H}), 2.88(\mathrm{dd}, J=14.1 \mathrm{~Hz}, 12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=$ $\left.4.1 \mathrm{~Hz}, 14.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SCH}_{2}\right), 3.52\left(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right)$, $3.88\left(\mathrm{dd}, J=4.1 \mathrm{~Hz}, 12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SCH}_{2}\right), 4.78(\mathrm{~d}, J=9.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{OCH}_{2}$ ), $6.10(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.22(\mathrm{~d}$, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.24(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) ; \mathrm{ms}: m / z=420$, 422( $\mathrm{M}^{+}$). Anal Calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{SBr}$ : C, 57.01; H, 4.99; Found C, $57.22 ; \mathrm{H}, 5.06 \%$.

Acknowledgement. We thank the CSIR (New Delhi) for financial assistance. Ms. S. M. is thankful to CSIR (New Delhi) for a Senior Research Fellowship. We also thank the DST (New Delhi) for providing UV-VIS spectrophotometer and FT-IR spectrometer under DST-FIST programm.

## REFERENCES

Corresponding author. Tel.: +91-33-2582-7521, fax: +91-3325828282; e-mail: kcm_ku@yahoo.co.in
[1] a) Bentley, R.; Zwitkowits, P. M. J. Am. Chem. Soc. 1967, 89, 676. b) Bentley, R.; Zwitkowits, P. M. J. Am. Chem. Soc. 1967, 89, 681.
[2] a) Omura, S.; Ohno, H.; Saheki, T.; Masakazu, Y.; Nakagawa, A..Biochem. Biophys. Res. Commun. 1978, 83, 704. b) Ohno, H.; Saheki , T.; Awaya, J.; Nakagawa, A.; Omura, S. J. Antibiot. 1978, 31, 1116.
[3] a) Groutas, W. C.; Abrams, W. R.; Carroll, R. T.; Moi, M. K.; Miller, K. E.; Margolis, M. T. Experientia 1984, 40, 361. b) Groutas, W. C.; Stanga, M. A.; Brubaker, M. J.; Huang, T. L.; Moi, M. K.; Carroll, R. T. J. Med. Chem. 1985, 28, 1106. c) Spencer, R. W.; Copp, L. J.; Pfister, J. R. J. Med. Chem. 1985, 28, 1828. d) Cook, L.; Ternai, B.; Ghosh, P. J. Med. Chem. 1987, 30, 1017.
[4] a) Rehse, K.; Schinkel, W.; Siemann, U. Arch. Pharm. 1980, 313, 344. b) Rehse, K.; Schinkel, W. Arch. Pharm. 1983, 316, 845. c) Rehse, K.; Schinkel, W. Arch. Pharm. 1983, 316, 988. d) Rehse, K.; Brandt, F. Arch. Pharm. 1983, 316, 1030.
[5] Majumdar, K. C.; Das, U.; Jana, N. K. J. Org. Chem. 1998, 63, 3550.
[6] Majumdar, K. C.; Ghosh, M.; Jana, M.; Saha, D. Tetrahedron Lett.. 2002, 43, 2111.
[7] Majumdar, K. C.; Ghosh , S. K. Tetrahedron Lett. 2002, 43, 2115.
[8] Majumdar, K. C.; Samanta, S. K. Tetrahedron Lett. 2002, 43, 2119.
[9] Majumdar, K. C.; Ghosh, S. K. Tetrahedron Lett. 2002, 43, 2123.
[10] Majumdar, K. C.; Sarkar, S.; Ghosh, S. Synth. Commun. 2004, 34, 1265.
[11] Majumdar, K. C.; Kundu, U. K.; Ghosh, S. Tetrahedron 2002, 58, 10309.
[12] Majumdar, K. C.; Kundu, U. K.; Ghosh, S. J. Chem. Soc. Perkin Trans 1 2002, 2139.
[13] Majumdar, K. C.; Kundu, U. K.; Ghosh, S. K. Org. Lett. 2002, 4, 2629.
[14] Majumdar, K. C.; Bandyopadhyay, A.; Biswas, A. Tetrahedron 2003, 59, 5289.
[15] Majumdar, K. C.; Ghosh, S.; Kundu, A. K. Synth. Commun.

2002, 32, 753.
[16] Majumdar, K. C.; Ghosh, S. Tetrahedron 2001, 57, 1589.
[17] a) Majumdar, K. C.; Ghosh, M.; Jana, M. Synthesis 2002, 669. b) Majumdar, K. C.; Jana, G. H. Synthesis 2001, 924.
[18] Majumdar, K. C.; Das D. P.; Jana, G. H. Synth. Commun. 1993, 23, 2171
[19] Majumdar, K. C.; Balasubramanian, K. K.; Thygarajan, B. S. J. Heterocycl. Chem. 1973, 10, 159.
[20] a) Majumdar, K. C.; Kundu, A. K. Indian J. Chem. 1993, 32B, 605. b) Majumdar, K. C.; Kundu, A. K. Can. J. Chem. 1995, 73, 1727.
[21] Majumdar, K. C.; Kundu, A. K.; Chatterjee, P. Synth. Commun. 1996, 26, 893.
[22] a) Majumdar, K. C.; Basu, P. K.; Roy, B. Synth. Commun. 2003, 33, 3621. b) Majumdar, K. C.; Sarkar, S. Tetrahedron 2002, 58, 8501.

